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SUMMARY 

Various finite element schemes of the Bubnov-Galerkin and Taylor-Galerkin types are analysed to obtain 
the expressions of truncation errors. This way, dispersion errors in the transient, and diffusion errors both in 
the transient and in the steady state, are identified. Then, with reference to the transient advection-diffusion 
equation, stability limits are determined by means of a general von Neumann procedure. Finally, the 
operational equivalence between Taylor-Galerkin methods, utilized for pseudo-transient calculations, and 
Petrov-Galerkin methods, derived for the steady state forms of the advection-diffusion equation, is 
illustrated. Theoretical conclusions are supported by the results of numerical experiments 
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INTRODUCTION 

The finite element method, based on Galerkin formulations, has become a well-established 
procedure for the solution of convection-type problems, where both advection and diffusion 
mechanisms must be accounted for in the mathematical model. On the other hand, for advec- 
tion-dominated problems, standard Bubnov-Galerkin procedures can lead to space oscillations, 
or ‘wiggles’, in the numerical solution unless the mesh is refined to reduce the local Peclet 
number. ‘ 9  The use of ‘upwinding’, or Petrov-Galerkin types of discretization, as an alternative 
treatment for node-to-node oscillations, has been investigated by many authors.’-3 However, 
Petrov-Galerkin methods have been derived for the steady-state forms of the transport equations 
and their extension to the transient solutions requires special  are.',^*^-^ Instead, for the transient 
advection-diffusion equations, alternative discretization procedures, connected with special time 
integration schemes, have gained wide acceptance in recent years.’. 2* ’, 

Among the new methods, the balancing tensor diffusivity, the characteristic-based Galerkin 
and the Taylor-Galerkin methods are the most popular. Despite their widely different mathemat- 
ical and physical foundations, all these methods lead to discretized equations that are either very 
similar, when the source terms are variable, or identical, when the source terms are constant. The 
resulting discretized equations always contain upwinding terms that are dependent on the time 
increment used and are characterized by effects that do not disappear when the steady state has 
been reached. Thus, even if we are only interested in steady-state solutions, we can still use one of 
these algorithms to find pseudo-transient solutions without ‘wiggles’. On the other hand, with 
sufficiently refined meshes, standard Bubnov-Galerkin discretizations and implicit time integra- 
tion schemes can still be considered a viable choice for the solution of convection-type problems. 
In fact, the standard fully implicit scheme allows the use of very large time steps and, even if it is 
characterized by a numerical diffusion in the transient, it does not present any numerical diffusion 

CCC 0271 -2091/95/06O443-16 
0 1995 by John Wiley & Sons, Ltd. 

Received 2 February 1994 
Revised 2 November 1994 



444 G. COMINI, M. MANZAN AND C. NONINO 

when the steady state has been reached.' The standard Crank-Nicolson scheme is not plagued by 
numerical diffusion, and is unconditionally stable, even though for relatively large time steps is 
characterized by serious dispersion errors. 

At this point, the global picture can be rather confusing: we appreciate unconditional stability 
but we want zero numerical diffusion with no dispersion and, occasionally, we like to suppress the 
wiggles without having to refine the mesh. We can have, at a price, any one of these nice features 
but we cannot have all of them built into a single algorithm. Obviously, at the end, we will have to 
compromise, but not before having very carefully evaluated all the possible approaches. In this 
paper several popular finite element procedures of the Bubnov-Galerkin and Taylor-Galerkin 
types are investigated, with the aim of finding numerical dispersion errors, diffusion errors and 
stability limits. Numerical dispersion errors are evaluated in the transient, while numerical 
diffusion errors are evaluated both for transient and steady-state situations. Actually, it has been 
established long ago that numerical diffusion errors can be different for transient and pseudo- 
transient calculations, but to the authors' knowledge this distinction has been made only in the 
context of finite difference methods." In this paper, the stability limits of the investigated 
algorithms are also reported. The limits are obtained by means of a very general procedure which 
is normally employed in the context of the finite difference method.'' Finally, well-known 
theoretical analyses' 9 are invoked to demonstrate the operational equivalence between 
Taylor-Galerkin methods, utilized for pseudo-transient calculations, and Petrov-Galerkin 
methods, derived for the steady-state forms of the advection-diffusion equations. 

In the next sections, the theoretical results are discussed in detail and supported by numerical 
experiments, with the aim of establishing practical guidelines to identify the most suitable 
algorithms for any problem of the convection type. 

DIFFUSION AND DISPERSION ERRORS 

The performances of finite element schemes with respect to diffusion and dispersion errors are 
usually evaluated with reference to the pure advection equation to ensure that all diffusion and 
dispersion effects have a non-physical origin. The effect of diffusion is to smooth out gradients 
and space variations of the independent variable. Therefore, we can say that an algorithm is 
affected by artificial, or numerical, diffusion when the computed amplitudes of the elementary 
wave components are always smaller than the corresponding exact, or analytical, values and, 
consequently, perturbations are excessively damped. On the other hand, numerical schemes can 
also show a non-physical, 'negative' diffusion and, in such a case, perturbations are amplified, 
sometimes to an extent that leads to numerical instability. In pure advection problems, all 
perturbations propagate in the same direction and with the same velocity of the flow. Conse- 
quently, we can say that an algorithm is affected by dispersion errors if the various wave 
components of the numerical solution have different velocities and spread apart as the solution 
proceeds in time, creating a pattern of trailing, or leading, waves. 

For a constant property incompressible fluid, the pure advection equation can be written in the 
form 

where T is the temperature, t is the time and u is the velocity. If u is time independent, from 
equation (1) we obtain immediately 
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The time discretization of equation (1) can be achieved by computing the value of the unknown T, 
at the time level (n + l)At,  by means of Taylor series expansions of initial point nAt, written in the 
form 

(3) 
or in the form 

(4) 

Tn+' = T n  + AtT:+, 

T"+l = T" + AtT: + *At2 T i + y  

where a and y are weighting parameters assuming a suitable value in the interval between 0 and 1. 
Obviously, for a and y arbitrarily chosen, the above equations are not exact anymore, and 
equation (3) yields an accuracy of the first order for the time expansion, while equation (4) leads to 
an accuracy of the second order. 

From equations (3) and (l), we obtain the algorithms of the Bubnov-Galerkin type (BG) for the 
time discretization of the pure advection equation 

T"+1 - T" 
E T:+, = - uT,"+' E - u[aT,"+' + (1 - a)T,"] ( 5 )  At 

In equation (5),  the advection term can be evaluated anywhere in the time interval between nAt 
and (n + 1)At. Accordingly, for a = 0 we obtain the BG explicit algorithm (BG-E), for a = 3 we 
obtain the BG Crank-Nicolson algorithm (BG-C) and for a = 1 we have the BG fully implicit 
algorithm (BG-I). Similarly, equations (4), (1) and (2) yield the algorithms of the Taylor-Galerkin 
type (TG) for the time discretization of the pure advection equation 

In equation (6) the advection term is always evaluated at the time level n, while the diffusion-like 
term can be evaluated anywhere in the time interval between nAt and (n + 1)At. Accordingly, for 
y = 0 we obtain the TG fully explicit algorithm (TG-E), for y = 4 we obtain the TG 
Crank-Nicolson algorithm (TG-C) and for y = 1 we have the TG implicit algorithm (TG-I). 

Equations (5)  and (6) can be discretized, with respect to the space co-ordinates, using a standard 
Galerkin process. For the typical node i, using elements of equal size Ax and linear shape 
functions, we obtain the assembled finite element equationsI2 

1 
-[(Ti"_+,' + 4T;+' + T;++/) -(Ti"_, + 4T: + Ti",,)] 
6At 

and 

for consistent and lumped capacity matrices, respectively. Clearly, the values of parameters a, j, 
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and y determine the particular BG or TG algorithms, as shown in Table I where the subscripts in 
the acronyms identifying the algorithms refer to the use of consistent (C) or lumped (L) capacity 
matrices. 

In determining the accuracy of the various schemes, it is worth noting that equations (7) and (8) 
can be considered numerical representations of the following modified transport equation: lo, ’ 

T, + uT, = a,,T,, + E: = E, (9) 
where a,, is the transient equivalent numerical diffusion, E: is the residual transient truncation 
error and E, is the global transient truncation error. Obviously, in the steady state we have 

and thus equations (7) and (8) reduce to the same form 

Table I. Values of the parameters a, and y to be used in equations (7), (8) 
and (1 1) to obtain the finite element schemes considered for the solution of 
the advection equation (1). Symbols a,, and ues denote the transient and the 
steady-state equivalent diffusion coefficients, while symbols E, and E, indicate 

the transient and the steady-state truncation errors. 

Scheme LY fi  y a,, Et aes Es 

BGc-E 

BGL-E 

BGc-C 

BGL-C 

BGc-I 

BGL-I 

TGc-E 

TGL-E 

TGc-C 

TGL-C 

TGc-I 

TGL-I 

0 

0 

1 
~ 1 
2 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

u’A1 
2 

u’A1 
2 

-- 

-~ 

0 

0 

u’At 
2 

u2At 
2 

0 

0 

0 

0 

0 

0 

~ 

- 

O(At, Ax4) 

O(At, Ax’) 

O(At2, Ax4) 

O(At ’, Ax2) 

O(At, Ax4) 

O(At, Ax’) 

O(At2, Ax4) 

O(At2, Ax’) 

O(At2, Ax4) 

O(At2, Ax’) 

O(At2, Ax4) 

O(At2, Ax4) 

0 

0 

0 

0 

0 

0 

u2At 
2 

u’At 
2 

u2At 
2 

u’At 
2 

u’At 

- 

- 

__ 

- 

2 
u2At 

2 

O(Ax2) 

O(Ax2) 

O(Ax2) 

O(Ax2) 

O(Ax2) 

O(Ax2) 

O(Ax’) 

O(Ax2) 

O(Ax’) 

O(Ax2) 

O(6x’) 

O(Ax2) 
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which can be considered the numerical representation of the transport equation 

uT, = aesTxx + E: = E, (12) 
where aes, E,* and E, are the steady-state equivalent numerical diffusion, the residual truncation 
error and the global truncation error, respectively. 

For all the schemes referred to in Table I, we can repeatedly use the general Taylor series 
expansion of T around the time instant t = nAt and the grid point i, having co-ordinate x 

T(x  f AX,  t + At) = T(x, t )  f AxT,(x, t )  + AtT,(x, t )  

This way, with reference to equations (7) and (8) we obtain the general expression of the transient 
truncation error E,,  referred to the grid point i and to the time level n 

U 
T,, + NUT,, - B T,, - At2 - T,,, + a - T,,, - By T,,, 

u2 ) (: 2 

(14) 

where a, B, y are defined in Table I, while we have 6 = 1 or 6 = 0 for consistent and lumped 
capacity matrices, respectively. 

Equation (14) can be conveniently rearranged by recursive applications of the advection 
equations (1) which yield, in addition to equation (2), such expressions as 

T,,, = - UTxxxr Tx,, = u2T,,,, T,,, = - u3Txxx (15) 

Setting a = 0 in equation (14) and taking into account equations (2) and (15) we can express the 
transient truncation error for the BG-E and the TG algorithms in the form 

- Ax2 (i T,,, - 6 (16) 

The transient truncation error for the BG-C schemes can be obtained from equation (14) by 
setting a = 3 and taking into account equations (2) and (15) 

Finally, by setting c1 = 1 in equation (14) and taking into account equations (2) and (15) we can 
obtain the transient truncation error for the BG-I algorithms in the form 

(18) 
U2 u3 
2 3 E, = At - T,, - A t 2 -  T,,, - Ax2 

In equations (16)-(18) we have 6 = 1 or 6 = 0 for consistent or lumped capacity matrices, 
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respectively. It is apparent that in these three equations the coefficient of the Ax2 term becomes 
equal to zero for 6 = 1, while it is different from zero for 6 = 0. Therefore, we have an 0 ( A x 4 )  
truncation error in the space discretization if we use consistent capacity matrices and only an 
0 ( A x 2 )  truncation error if we use lumped capacity matrices. It must be pointed out, however, that 
this holds true only if the mesh is regular and equally spaced. 

In the steady state, all time derivatives in equation (14) become equal to zero, and we 
immediately obtain the steady-state truncation error in the form 

Equation (19) has a general validity and can be utilized for all the algorithms referred to in 
Table I. 

Theoretical analysis5, l 4  and numerical experiments indicate that diffusion errors are in- 
fluenced by the terms of the truncation error containing even order derivatives, while dispersion 
errors essentially depend on the terms of E, containing odd derivatives of order three or higher. 
Therefore, a simple inspection of equations (16)-( 19) can already lead to interesting conclusions 
on the behaviour of the different algorithms. In particular, from comparisons with equations (9) 
and (12) we can say that the numerical diffusion coefficients a,, and aes, i.e., the coefficients of the 
terms containing second-order derivatives, are always equal to 5 Atu2/2 when different from 
zero. 

The transient and the steady-state equivalent diffusion coefficients, and the order of magnitude 
of the truncation errors resulting from equations (16)-(19) are reported in Table I. From this table 
we can see that the BG-C schemes alone are characterized by truncation errors that do not 
include a numerical diffusion term, either in the transient or in the steady-state analyses. Instead, 
the other BG algorithms exhibit numerical diffusion in the transient but not in the steady state, 
while TG algorithms do not exhibit numerical diffusion in the transient, but present numerical 
diffusion in the steady state. In particular, BG-E algorithms show a negative numerical diffusion 
in the transient analysis and, consequently, these algorithms are unstable if the partial differential 
equation does not include a physical diffusion term. Besides, it is worth noting that consistent 
capacity matrices always yield better space accuracies than lumped capacity matrices. However, 
the absence of numerical diffusion is not the only criterion to judge the performance of an 
algorithm. In fact, also dispersion errors play an important role,2.'o-'2 but we prefer to defer our 
considerations on this issue until, in a later section, we are able to support them with the results of 
some numerical experiments. 

STABILITY ANALYSIS 

In analysing the numerical stability, we consider the transient advection-diffusion equation. For 
a constant-property incompressible fluid this equation can be written as 

_ -  aT aT a2T 
at - T t =  - U - + a - =  - u T , + a T , ,  ax  a x 2  

where a is the thermal diffusivity. The time discretization of equation (20)  can be achieved by 
following the same steps outlined in the previous section. In fact, the only addition, with respect to 
equation (l), is the physical diffusion term that, on the other hand, can be discretized in the same 
way as the numerical diffusion term. Thus, for the typical node i, we obtain the assembled finite 
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449 

and 

a 
A x  + T[9(T:-+: - 2T:+' + T:,?t) + ( 1  - $)(Tin_, - 2T: + T;+,)l (22)  

for consistent and lumped capacity matrices, respectively. Clearly, the values of parameters a, 8, 
y and $determine the particular BG or TG algorithms, as shown in Table 11, where the first three 
letters and the subscript have the same meaning illustrated in the previous section. The last letter, 
instead, refers to the time discretization algorithm utilized for the diffusion term: E stands for 
explicit (9 = 0), C for Crank-Nicolson (9 = i), and I for fully implicit (9 = 1). Again, we can point 
out that in one-dimensional problems, with elements of equal size, linear shape functions, and 
lumped capacity matrices, finite element algorithms lead to the same discretized equations that 
are yielded by finite differences. 

Following the same steps illustrated in the previous section, we can also find the truncation 
errors of the various algorithms used for the solution of advection-diffusion problems. However, 
the only difference with respect to the results reported in Table I is that the addition of the 
physical diffusion terms changes to O(Axz) the truncation error in the space discretization of all 
algorithms with consistent capacity matrices, while it does not alter the space accuracy of 
algorithms with lumped capacity matrices. 

Equations (21)  and (22)  can be conveniently rewritten as 

blT:-+t + ( 1  - bl - b2)T:" + bzTin,+l' = dlTi"_l + ( 1  - d1 - d2)T: + dzTi",, (23)  

where 

bl = d - ~ U C O  - PyFo, - 9Fo  

bz = 6 + )UCO - ByFo, - 9Fo 

d l  = & + ) ( I  - U)CO + p(1 - y )Fo ,  + (1 - 9 ) F o  

dz  = & - i ( 1  - ~ ) C O  + p(1 - ?)Foe + ( 1  - 9)Fo 
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Table 11. Values of the parameters a, jl, y and 9 to be used in 
Equations (21) and (22) to obtain the finite element schemes con- 
sidered for the solution of the energy equation (20). The various 

schemes are characterized by different stability limits 
~ 

Scheme x p ' r ' 9  Stability limits 

0 0 -  0 
1 2 

Co < - Pe; Co < ~ 

6 Pe 
1 2 co < - Pe;  co < - 
2 Pe 

BGC-EE 

0 0 -  0 
1 f o -  z 

: o -  5 
1 0 -  1 
1 0 -  1 

BGL-EE 

BGc-CC 
BGL-CC 
BGc-I1 
BGL-I1 

Unconditionally stable 
Unconditionally stable 
Unconditionally stable 
Unconditionally stable 

TGV-EE 0 1 0 0  

TGL-EE 0 1 0 0  

& co < - 
3 

0 1 0 4  TGC-EC 

0 1 0 :  co < 1 TG ,-- EC 

0 1 0 1  TGc-EI 

0 1 0 1  

TGc-CC 
TGL-CC 
TGC-11 
TGL-I1 

0 1 % :  
0 l t t  
0 1 1 1  
0 1 1 1  

Unconditionally stable 
Unconditionally stable 
Unconditionally stable 
Unconditionally stable 

and the coefficients of the general scheme (21) with consistent capacity matrices, while 
b 1 - - - -  ECO - ByFo, - 8Fo 

b2 = ~ R C O  - P ~ F o ,  - 8 F o  

d l  = $(l  - E)CO + P(1 - ?)Foe + (1 - $)Fo 

d - - - -  i (1  - R)CO + B(1 - y)Fo,  + (1 - 8)Fo  
are the coefficients of the general scheme (22) with lumped capacity matrices, 

At 
c o = u -  

A x  
is the cell Courant number related to the advection term 

At  
F o = a 7  

A x  
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is the cell Fourier number related to the physical diffusion term, and 

is the equivalent cell Fourier number related to the diffusion-like term. 

solution can be expressed by means of a Fourier series, whose typical term is 
Following the von Neumann method for stability analysis, we assume that the numerical 

(29) = Fneio(xi t Ax) 

where i = J - 1 is the imaginary unit and a is the wave number." Substituting definition (29) 
into equation (23) and using the identities 

(30) i iuAx - 
- cos(oAx) & i sin(oAx) 

we obtain the amplification factor 

(31) 
p+ 1 

F"  
1 - (d, + d2)[l - cos(oAx)] - i(dl - d,)sin(aAx) 
1 - (b ,  + &)[I - cos(crAx)] - i(b, - b2)sin(aAx) 

- G=-- - 

The modulus of the amplification factor G must be lower than or equal to one if the solutions are 
to remain bounded. Thus, multiplying by the conjugate of G we obtain the condition which must 
be satisfied to have stability 

(32) 
D1 sin4(aAx/2) + D 2  sin2(oAx/2) + 1 
B ,  sin4(aAx/2) + B2 sin2(aAx/2) + 1 

1 ~ 1 ~  = lcGl= < I  

where 

D1 = 16dld2, 

B1 = 16blb2, 

0 2  = 4[(d1 - d2)' - (d1 + dZ)] 

B2 = 4[(b1 - b J 2  - (bl + bz)]  
(33) 

It has been shown in Reference 11 that the necessary and sufficient conditions to satisfy 
equation (32) are 

and 

(34) 

Condition (34) leaL., to the diffusion limit for stability, which is incpendent of the velocity u and 
is of the form 

c o  
F o = - < K  

Pe 

In equation (36), K is a suitable numerical constant and Pe is the cell Peclet number, 

p e = - = ( ! ! ) ( g ) = *  co 
Fo a 

Condition (35), instead, leads to the advection limit for stability, which is of the form 

(37) 
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and depends on the velocity. For the schemes referred to the Table 11, limits (36) and (38) can be 
expressed by means of simple algebraic relations. If both limits are always satisfied, the algorithm 
is said to be unconditionally stable. 

Among the Bubnov-Galerkin schemes, the Crank-Nicolson and the fully implicit algorithms 
are unconditionally stable, while the BG-EE schemes are characterized both by a diffusion and an 
advection limit. Taylor-Galerkin algorithms instead are either unconditionally stable or are 
characterized only by an advection limit. 

STEADY-STATE PROBLEMS 

It has already been pointed out that steady-state solutions can be found by means of a pseudo- 
transient simulation. Thus, it is worth analysing the behaviour of the finite element schemes for 
the advection-diffusion equation (20) when the steady state has been reached. In such a case, 
equation (20) becomes 

while both equations (21) and (22) reduce to 

or to the alternative form 

Ti+1 = 0 (41) 
1+pco  1 )  ( 2 )  ( 1 - P " d )  

Pe Pe 2 Pe  
+-  Ti-1 + ~ C O  +-  Tj-  

It can be shown that, with a given mesh, wiggles can be avoided and temperature gradients can be 
correctly represented if the cell Peclet number does not become so large to change the sign of the 
coefficient of Ti+ 1. This requirement yields 

1 -gco  1 
2 Pe'O 

Therefore, for Bubnov-Galerkin schemes ( p  = 0), we obtain 

while, for Taylor-Galerkin schemes (a = l), we obtain 
Pe 6 2 

2 
Pe 6 ~ 

1 - c o  

(43) 

(44) 

i.e. the usual conditions to avoid, in the steady-state, the typical '2Ax' wave patterns. 
Obviously, in the steady state, we can also use Petrov-Galerkin formulations2 with various 

forms of weighting functions that lead to different 'upwind' finite element schemes. In one 
dimension, with elements of equal size, upwinding can be introduced using a weighting parameter 
2 in the assembled equation for the typical node i 

U a 

2Ax Ax ~ [A(Ti - Tj-1) + (1 - A)(Ti+1 - Ti-,)] + :(Ti-1 - 2Ti + Ti+I) = 0 (45) 

We have full upwinding for A = 1 ,  and a central difference representation of the advection term 
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for I = 0. Equation (45) can also be written in the form 

- (F + k ) T i - l  + (A +&)Ti - (7 - = 0 

which is identical to equation (41) if is equal to 1 and the cell Courant number is equal to the 
weighting parameter I. This proves the equivalence of steady-state, Petrov-Galerkin solutions 
and pseudo-transient Taylor-Galerkin solutions. Since in one-dimensional problems, with ele- 
ments of equal size, Petrov-Galerkin schemes yield solutions that are exact at nodes when an 
optimal weighting parameter 

2 
Aop, = coth G) - - 

Pe (47) 

is used,' Taylor-Galerkin schemes can also be optimized by assuming Co = I,,,. Actually, if we 
use the full explicit lumped Taylor-Galerkin scheme (TGL-EE), we do not even have to utilize 
equation (47) because it has been shown that nearly optimal, pseudo-transient solutions can be 
obtained by choosing a cell Courant number as close as possible to the limiting, or critical, value 
for stability.' 

NUMERICAL EXPERIMENTS 

The results of two numerical tests are reported here with the purpose of showing the relevant 
features of some of the algorithms discussed in this paper. In the numerical tests, for the sake of 
simplicity, we have used dimensionless variables x', u', t' and T', defined in terms of suitable 
reference values. 

One-dimensional propagation of a cosine wave (a = 0 )  

A cosine temperature wave, propagating in a non-conductive fluid with constant, uniform 
velocity u' = 1, is considered. At t' = 0 the maximum (T' = 1) is located at x' = 0. The boundary 
conditions are T' = 0 at x' --+ 00. Since the physical diffusion is equal to zero, the wave 
maintains its shape during the propagation. The numerical solutions are obtained using a uni- 
form mesh of linear elements of size Ax' = 0.1. Different time steps are chosen to obtain different 
cell Courant numbers. Selected temperature distributions at t' = 8 are shown in Figure 1 for six 
algorithms, namely the BGc-C, BGc-I, TGc-E, TGL-E, TGc-C, TGc-I schemes. The BG-E 
algorithm, because of its negative numerical diffusion, is always unstable in the case of pure 
advection, while the lumped capacity algorithms different from the TGL-E are of little practical 
interest, and thus are not considered here. 

As it appears in Figure l(a), the BGc-C algorithm is not affected by numerical diffusion, but is 
characterized by numerical dispersion errors which increase with the Courant number. From 
equation (17) we can see, in fact, that the terms.containing third-order derivatives do not cancel 
out, thus yielding a significant dispersion error. The results reported in Figure l(b) concern the 
BGc-I algorithm which, according to equation (18), is affected by numerical diffusion and 
numerical dispersion. However, the numerical diffusion dominates, and the trailing waves are 
almost completely damped. 

In Figure l(c) and l(d) we have reported the results obtained with the TGc-E and TGL-E 
algorithms, respectively. As we can see from equation (16), for B = 1 and y = 0 the transient 
truncation error of the algorithm with consistent capacity matrices (6 = 1) contains a third-order 
derivative whose coefficient is different from zero. Instead, with = 1, y = 0 and lumped capacity 
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(4 

Figure 1. Propagation of a cosine wave (a = 0). Temperature distribution at t = 8, obtained with different algorithms and 
different cell Courant numbers: (-) exact; (- - -) Co = 0.1; ( -  - - - )  Co = 0.5; (-) Co = 1; (- - - -) Co = 2 
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matrices (6 = 0), the truncation error (16) becomes 

u3 U 

6 6 
E, = A t 2  - T,,, - AX' - T,,, + O(At  3, Ax4) 

where, for uAt/Ax = Co = 1, the terms containing third-order derivatives cancel out, thus 
minimizing the dispersion error. This is confirmed by Figure l(d), where we can see how the 
solution improves when Co approaches the value of 1, which also represents the stability limit. 
For Co = 1 the numerical and analytical solutions are almost indistinguishable. 

Finally, in Figures 1 (e) and 1 (f) we have reported the results obtained with the TGc-C and 
TGc-I algorithms, respectively. These schemes are unconditionally stable but, as we can see, they 
are affected by significant dispersion errors. From Figures 1 (c), 1 (e) and 1 (f) it is apparent that the 
dispersion error produces strong leading waves with the TGc-E algorithm (y = 0), weak trailing 
waves with the TGc-C algorithm (y = i) and strong trailing waves with the TGc-I algorithm 
(y = 1). This means that the position of the waves moves forward for increasing y, while their 
strength seems to reach a minimum at some intermediate value of y between 0 and 1. As pointed 
out in Reference 15, dispersion errors can be minimized by using consistent capacity matrices 
(6 = 1) and assuming y = 4. In this case, equation (16) becomes 

where there are no terms containing third-order derivatives. This algorithm, however, is only 
conditionally stable," with a limit that for pure advection is Co = 1.  

Boundary-layer-type problem (a  > 0 )  

The stationary solution to equation (20) in the domain 0 < x' < 1, with a constant, uniform 
advection velocity u' = 1 and boundary conditions T' = 0 at x' = 0 and T' = 1 at x' = 1, is 
sought as a transient evolution from the initial temperature distributions T' = x'. The analytical 
solution to the problem is2 

where Pe* is the global Peclet number evaluated in terms of the same reference length used in the 
definition of the dimensionless variable x'. The numerical tests have been performed using a time 
step At' = 0.1 and a mesh consisting of 10 linear elements of size A'x = 0.1, yielding a cell Courant 
number Co = 1. The global Peclet number is Pe* = 25, corresponding to a cell Peclet number 
Pe = 2.5. 

The results shown in Figure 2(a) are obtained using the BGc-I1 algorithm, and represent the 
temperature profiles at different times during the pseudo-transient simulation. Since the cell 
Peclet number is greater than 2 the solutions present an oscillatory behaviour, characterized by 
the usual 2Ax pattern. It is worth noting that the numerical diffusion, which is typical of the 
BGc-I1 algorithm in the transient, does not prevent spatial oscillations from appearing even in the 
early stages of the numerical simulation. The oscillatory solution obtained for t' -+ GO is different 
from the analytical one, but is coincident with the finite element solution that would be found 
by directly solving the stationary problem. In fact, in the steady state, the BGc-I1 algorithm does 
not produce any numerical diffusion. Repeating the simulation with a cell Peclet number lower 
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Figure 2. Boundary layer type problem (a > 0). Temperature distributions obtained: (a) in a pseudo-transient simulation, 
using the BGc-I1 algorithm and Co = 1; (b) at steady state, using the TGc-EI algorithm and different cell Courant 

numbers. (-) exact; ( - - - ) Co = 0 1 ;  ( - - - - ) Co = 0 5 ;  (-) Co = 1; (0) Co = 0.38 

than 2, we would find a steady-state solution which is nearly coincident with the analytical 
solution.' 

In Figure 2(b) we report the steady-state solution of the same problem obtained with the 
TG,--EI algorithm for different cell Courant numbers. We can see that this algorithm produces 
steady-state temperature distributions corresponding to values of effective diffusivity 

u2At 
a,  = a + aes = a  + ~ 

2 

higher than the physical diffusivity a in equation (39). The corresponding effective cell Peclet 
number iss 

Pe - - uAx 1 Pee = ~ = 
a, 1 At Cope  

- + - u u 2  1 + -  
Pe 2 2 

lower than the physical cell Peclet number. Therefore, the solution can be maintained oscilla- 
tion-free if sufficiently high values of the cell Courant number are used. In Figure 2(b) it is also 
shown that exact nodal values can be obtained for Co = Coop,, which, in this case, is equal to 0.38, 
according to equation (47). 

Similar results would have been obtained also by using other Taylor-Galerkin algorithms, 
since all of them, as shown in Table 11, are affected by the same steady-state numerical diffusion. 

CONCLUSIONS 

The results outlined in the previous sections can lead to criteria for the choice of the most suitable 
algorithm for any given task. With reference to the Bubnov-Galerkin and Taylor-Galerkin 
schemes, we can offer the following guidelines. 

Pseudo-transient simulations 

In the solution of steady-state problems by means of pseudo-transient simulations, stability 
and absence of stationary numerical diffusion are characteristics of great interest. Therefore, fully 
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implicit Bubnov-Galerkin (BG-11) schemes can be confidently employed since they allow the use 
of very large time steps to reach convergence and, in the steady state, are not affected by 
numerical diffusion. The only reason not to use BG-I1 schemes for pseudo-transient simulations 
can be the appearance of wiggles, connected with large cell Peclet numbers, i.e. with meshes that 
are too coarse with respect to the local velocity. If the required mesh refinement is too expensive, 
we can consider the alternative of using one of the Taylor-Galerkin schemes, characterized by 
a stationary numerical diffusion that plays the role of an upwinding term. 

Transient simulations 

In truly transient simulations, we can use Bubnov-Galerkin schemes of the Crank-Nicolson 
type (BG-CC) which are unconditionally stable and are not affected by numerical diffusion, even 
if they present significant numerical dispersion errors for relatively large cell Courant numbers. 
As an alternative, Taylor-Galerkin schemes might also be considered since they are not affected 
by numerical diffusion in transient calculations. 

Taylor-Galerkin schemes 

Many schemes of this type have been proposed and, therefore, their respective ranges of 
applicability are still the object of research. Here we can only say that fully explicit 
Taylor-Galerkin algorithms (TG-EE) can be very convenient with lumped capacity matrices 
since these algorithms only require the inversion of a diagonal matrix to march ahead in time. 
However, to have better stability characteristics, the TG-EI and the TG-I1 schemes can also be 
considered. The TG-EI schemes perform better than the TG-EE schemes with respect to stability, 
but are not unconditionally stable like the TG-I1 schemes. On the other hand, if a direct solver is 
used, with the TG-EI schemes it is not necessary to perform the system matrix factorization at 
every time step. In fact, since only the constant physical diffusion term is dealt with implicitly, 
a re-solution facility can be used. Instead with TG-I1 schemes, also the variable diffusion-like term 
is dealt with implicitly and, consequently, a new matrix factorization must be performed at every 
time step. Finally, we must remember that all Taylor-Galerkin algorithms are affected by 
dispersion errors which increase for increasing cell Courant numbers, thus deteriorating the 
overall accuracy of the solutions. 
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